Introduction to Database
Systems

CSE 444

Lecture #17
March 7, 2001

Announcements

¥ Today
=IHW#4 (optional) due
ElProject Interviews
[X15-7pm today, 3-5pm tomorrow
¥ HW Solutions
EHW#3 available later today
[=RIHW#4 available by Friday
¥ Graded Homework
EHW#3 — being handed back
EHW#4 — available next Tuesday
¥ Resolving Grading Issues
RIHW#3 grading issue — must resolve by this Friday
RIHW#4 grading issue — must resolve before exam

2

Announcements

3 Teaching Evaluation
“INeed a volunteer!
38 Different office hours for next week
[RAlYana: M, W 4-5pm
[AYana: appointment via email for Thu 8-10am
[ASurajit: Tu 1.00-2.00pm
[Surajit: Thu 11.30am-12.30pm Office: 226D
38 Continue to check mail archive for all
communications/issues related to the course
$8Final Exam Thu March 15
HIn Class (Loew 102) 2.30-4.20pm
[~1100 points, 100 mins
EQuestions — 5 to 10 points each

Selective Exclusion from
Finals

38 All concepts included.

3 Exclusions only apply to “direct questions”
INo direct questions on E-R Diagrams
(Chapter 2, 3.1-3.4)
XIBut, concepts of relationships, key, constraints included
&INo direct questions on deadlocks
(Chapter 10.3 — Vol 2)
INo direct questions on Media Failure
(Chapter 8.5- Vol 2)
&INo direct questions from “Undo-only” and “Redo-
only” logging (Chapter 8.3-8.4 Vol 2) but there will

be questions from “Undo/Redo Logging” (Chapter 8.5

Vol 2)
[XIBe familiar with concepts in Chapters 8.3-8.4 (Vol 2)

4

Query Optimization

Required Reading: 7.2, 7.4, 7.5, 7.6,
7.7.0-7.7.2,7.7.6

Query Optimization:
Phases

e Parsing phase
Produces a parse tree
¥Query-Rewrite phase
&IProduces a logical tree
FPhysical Query plan generation
RProduces executable (physical) plan

Query Optimization

F8Algebraic laws provide alternative
execution plans

¥Estimate costs of alternative modes of
execution
¥ Efficiently search the space of alternatives

&ISimplify search by applying heuristics
(without costing)

Xlapply laws that seem to result in cheaper plans

Converting from SQL to
Logical Plans

Select al, ..., an

From R1, ..., Rk
Where C

I_Ial,...,an(o- C(Rl > R21><1 =D Rk))

Enumerating Physical Plans

FExhaustive — Consider all possible:
RJoin Orders
RAlgorithms for each operator

3 Heuristic Search
RIE.g. Greedy approach

&IPick next relation such that join size is
smallest

Enumerating Physical
Plans

¥ Branch-and-Bound Enumeration
IFind a good starting plan (having cost C)

HIn subsequent search, eliminate any
subquery with cost > C

38Hill Climbing
[NIStart with heuristically selected plan

R Explore plans in the “neighborhood”
[XIE.g. replace Nested-Loops join with Hash-Join

Enumerating Physical
Plans

F¥Dynamic Programming
RBottom-up strategy

IFor each subexpression, only keep plan with
the least cost

XIConsider possible implementations of each node
assuming

Must consider interesting orders

[XIE.g., when subexpression is sorted on a sort
attribute at the node

&=IMore later

Determining Join Order

¥ Select-project-join

38Push selections down, pull projections up
¥We need to choose the join order

#This is the main focus of our study today

Determining Join Order:
Join Trees

#$R1 «R2pq ... Rn

Join tree:
/ . \
> >
R3 R1 R2 R4

3 A join tree represents a plan. An optimizer
needs to inspect many (all ?) join trees

Bushy Join Trees

N/N\N
AN
Rl/ \RS

Linear Join Trees

FLeft deep:
P>
N/ SRa
N/ \RZ
RN
> R5
RN
R3 R1

Join Ordering Problem

¥Given: a query R1> R2< . > Rn

¥Assume we have a function cost() that
gives us the cost of every join tree

#Find the best /inear join tree for the query

Intro to Enumeration using
Dynamic Programming

38 For each subquery Q < {R1, ..., Rn}
compute the following:
RSize(Q)
=IA best plan for Q: Plan(Q)
RThe cost of that plan: Cost(Q)

Dynamic Programming (1)

38Step 1: For each {Ri} do:
ASize({Ri}) = B(Ri)
HPlan({Ri}) = Ri
& Cost({Ri}) = (cost of scanning Ri)

Dynamic Programming (2)

¥Step i: For each Q & {R1, ..., Rn} of
cardinality i do:

B Compute Size(Q)

For every subquery Q' and a relation Rj
s.t. Q = Q' U {Rj} _
compute cost(Plan(Q") NRJ)
R Cost(Q) = the smallest such cost
HPlan(Q) = the corresponding plan

38Final Step: Return Plan({R1, ..., Rn})

Comments on Enumeration

38 Recall: computes optimal plans for subqueries:
RStep 1: {R1}, {R2}, ..., {Rn}
RStep 2: {R1, R2}, {R1, R3}, ..., {Rn-1, Rn}
IStep n: {R1, ..., Rn}
3 Read Example 7.3.5 (important)
3 Practical Issues
RHeuristics for Reducing the Search Space
[XIRestrict to trees “without cartesian product”
&=INeed more than just one plan for each subquery:
X“interesting orders”

Role of Interesting Order

#Join conditions: R1.a = R3.a = R5.a
#Sub-optimal plan for first join need to be

considered P
> / \ R4
SN
/D<] \ R2
> R5
N
R3 R1

Completing the
Physical Query Plan

#Choose algorithm to implement each
operator
=INeed to account for more than cost:
XIHow much memory do we have ?
XIAre the input operand(s) sorted ?
3 Decide for each intermediate result (not
included in exam):
To materialize or to pipeline

Choice of Algorithms:
Selection

3 Sequential scan
3 Index-based

RIdentify selection condition for which an index exists
[~Retrieve all tuples using the index
XIHow many are there?
XIHow much does it cost?
« Equality condition — easy
« Inequality condition:
— Clustered Index: B (R) /3, Non-clustered Index: T(R)/ 3
[~Post-Filter other predicates

¥ Read Example 7.37

Choice of Algorithms: Join

3 0ne pass algorithms works for “small” sizes)
8 Sort-Join

®When an order exists at least partially

A Multiple joins on same attribute (interesting order)
3 Index Nested Loop Join

AIndex on inner
3 Hash Join

Physical Query Plan

#Leaves

KRTablescan®, Indexscan(R,C), Indexscan
(RA)

F8Selection

HFiter©, Indexscan(R,C)
FJoin

®Hash-Join(), ..
#Sort()....

What did you learn?

3 Database schema, its design principles
3 SQL — Writing Database Programs
3 Connectivity/Client Server Issues
3 Inside DBMS
A Transactions, Storage, Query Engine
¥ We did not cover..
Data Analysis, Warehouse, Mining
TP Monitor (Application Server)
BIXML
AMultimedia

